Impact of Wind Veer and the Coriolis Force for an Idealized Farm to Farm Interaction Case
The impact of the Coriolis force on the long distance wake behind wind farms is investigated using Large Eddy Simulations (LES) combined with a Forced Boundary Layer (FBL) technique. When using the FBL technique any mean wind shear and turbulent fluctuations can be added with body forces. The wind s...
Gespeichert in:
Veröffentlicht in: | Applied sciences 2019, Vol.9 (5), p.922 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The impact of the Coriolis force on the long distance wake behind wind farms is investigated using Large Eddy Simulations (LES) combined with a Forced Boundary Layer (FBL) technique. When using the FBL technique any mean wind shear and turbulent fluctuations can be added with body forces. The wind shear can also include the mean wind veer due to the Coriolis force. The variation of the Coriolis force due to local deviations from the mean profile, e.g., from wakes, is not taken into account in the FBL. This can be corrected for with an extra source term in the equations, hereon defined as the Coriolis correction. For a row of 4 turbines it is shown that the inclusion of the wind veer turns the wake to the right, while including the Coriolis correction turns it to the left. When including both wind veer and Coriolis correction the impact of wind veer dominates. For an idealized farm to farm interaction case, two farms of 4 ∗ 4 turbines with 6 km in between, it can be seen that when including wind veer and the Coriolis correction a approximately 3% increase in the relative production for a full wake direction can be seen and only a slightly smaller increase can be seen when including only wind veer. The results indicate that FBL can be used for studies of long distance wakes without including a Coriolis correction but efforts need to be taken to use a wind shear with a correct mean wind veer. |
---|---|
ISSN: | 2076-3417 2076-3417 |
DOI: | 10.3390/app9050922 |