Urban Freight Management with Stochastic Time-Dependent Travel Times and Application to Large-Scale Transportation Networks

This paper addressed the vehicle routing problem (VRP) in large-scale urban transportation networks with stochastic time-dependent (STD) travel times. The subproblem which is how to find the optimal path connecting any pair of customer nodes in a STD network was solved through a robust approach with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete Dynamics in Nature and Society 2015-01, Vol.2015 (2015), p.315-324-332
Hauptverfasser: Sun, Shichao, Yang, Dongyuan, Duan, Zhengyu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper addressed the vehicle routing problem (VRP) in large-scale urban transportation networks with stochastic time-dependent (STD) travel times. The subproblem which is how to find the optimal path connecting any pair of customer nodes in a STD network was solved through a robust approach without requiring the probability distributions of link travel times. Based on that, the proposed STD-VRP model can be converted into solving a normal time-dependent VRP (TD-VRP), and algorithms for such TD-VRPs can also be introduced to obtain the solution. Numerical experiments were conducted to address STD-VRPTW of practical sizes on a real world urban network, demonstrated here on the road network of Shenzhen, China. The stochastic time-dependent link travel times of the network were calibrated by historical floating car data. A route construction algorithm was applied to solve the STD problem in 4 delivery scenarios efficiently. The computational results showed that the proposed STD-VRPTW model can improve the level of customer service by satisfying the time-window constraint under any circumstances. The improvement can be very significant especially for large-scale network delivery tasks with no more increase in cost and environmental impacts.
ISSN:1026-0226
1607-887X
DOI:10.1155/2015/914309