Assessment of Thermal Stresses in Asphalt Mixtures at Low Temperatures Using the Tensile Creep Test and the Bending Beam Creep Test
Thermal stresses are leading factors that influence low-temperature cracking behavior of asphalt pavements. During winter, when the temperature drops to significantly low values, tensile thermal stresses develop as a result of pavement contraction. Creep test methods can be suitable for the assessme...
Gespeichert in:
Veröffentlicht in: | Applied sciences 2019, Vol.9 (5), p.846 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Thermal stresses are leading factors that influence low-temperature cracking behavior of asphalt pavements. During winter, when the temperature drops to significantly low values, tensile thermal stresses develop as a result of pavement contraction. Creep test methods can be suitable for the assessment of low-temperature properties of asphalt mixtures. To evaluate the influence of creep test methods on the obtained low-temperature properties of asphalt mixtures, three point bending and uniaxial tensile creep tests were applied and the master curves of stiffness modulus were analyzed. On the basis of creep test results, rheological parameters describing elastic and viscous properties of the asphalt mixtures were determined. Thermal stresses were calculated and compared to the tensile strength of the material to obtain the failure temperature of the analyzed asphalt mixtures. It was noted that lower strain values of creep curves were obtained for the Tensile Creep Test (TCT) than for the Bending Beam Creep Test (BBCT), especially at lower temperatures. Results of thermal stress calculations indicated that higher reliability was obtained for the viscoelastic Monismith method based on the TCT results than for the simple quasi-elastic solution of Hills and Brien. The highest agreement with the TSRST results was also obtained for the Monismith method based on the TCT results. No clear relationships were noted between the predicted failure temperature and different methods of thermal stress calculations. |
---|---|
ISSN: | 2076-3417 2076-3417 |
DOI: | 10.3390/app9050846 |