Autonomous Vehicles: The Cybersecurity Vulnerabilities and Countermeasures for Big Data Communication
The possible applications of communication based on big data have steadily increased in several industries, such as the autonomous vehicle industry, with a corresponding increase in security challenges, including cybersecurity vulnerabilities (CVs). The cybersecurity-related symmetry of big data com...
Gespeichert in:
Veröffentlicht in: | Symmetry (Basel) 2022-11, Vol.14 (12), p.2494 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The possible applications of communication based on big data have steadily increased in several industries, such as the autonomous vehicle industry, with a corresponding increase in security challenges, including cybersecurity vulnerabilities (CVs). The cybersecurity-related symmetry of big data communication systems used in autonomous vehicles may raise more vulnerabilities in the data communication process between these vehicles and IoT devices. The data involved in the CVs may be encrypted using an asymmetric and symmetric algorithm. Autonomous vehicles with proactive cybersecurity solutions, power-based cyberattacks, and dynamic countermeasures are the modern issues/developments with emerging technology and evolving attacks. Research on big data has been primarily focused on mitigating CVs and minimizing big data breaches using appropriate countermeasures known as security solutions. In the future, CVs in data communication between autonomous vehicles (DCAV), the weaknesses of autonomous vehicular networks (AVN), and cyber threats to network functions form the primary security issues in big data communication, AVN, and DCAV. Therefore, efficient countermeasure models and security algorithms are required to minimize CVs and data breaches. As a technique, policies and rules of CVs with proxy and demilitarized zone (DMZ) servers were combined to enhance the efficiency of the countermeasure. In this study, we propose an information security approach that depends on the increasing energy levels of attacks and CVs by identifying the energy levels of each attack. To show the results of the performance of our proposed countermeasure, CV and energy consumption are compared with different attacks. Thus, the countermeasures can secure big data communication and DCAV using security algorithms related to cybersecurity and effectively prevent CVs and big data breaches during data communication. |
---|---|
ISSN: | 2073-8994 2073-8994 |
DOI: | 10.3390/sym14122494 |