Performance of Marmoset Monkeys as Embryo Donors Is Reflected by Different Stress-Related Parameters

Non-human primates (NHPs) serve as embryo donors for embryo collection in order to mimic genetic diseases in humans by genetic modification. Reproductive health of the embryo donors is crucial, and chronic distress needs to be avoided. Embryo retrieval rates (ERR), anti-Müllerian hormone (AMH) conce...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Animals (Basel) 2022-09, Vol.12 (18), p.2414
Hauptverfasser: Drummer, Charis, Münzker, Julia, Heistermann, Michael, Becker, Tamara, Mißbach, Sophie, Behr, Rüdiger
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Non-human primates (NHPs) serve as embryo donors for embryo collection in order to mimic genetic diseases in humans by genetic modification. Reproductive health of the embryo donors is crucial, and chronic distress needs to be avoided. Embryo retrieval rates (ERR), anti-Müllerian hormone (AMH) concentrations, cortisol levels, and body weight fluctuations were assessed as markers for fertility and distress. With regard to successful embryo retrievals (total n = 667), the animals were either used for extended periods (long-term group; LTG) or only for short periods (short-term group; STG). Retrospective evaluation expectedly showed that animals in the LTG had a higher ERR than animals in the STG (p < 0.0001). Importantly, ERR in the LTG remained stable throughout the experimental period, and high embryo rates were already encountered during the first year of experimental use (p = 0.0002). High ERR were associated with high AMH and low cortisol levels, and minimal body weight fluctuations following anesthesia, indicating a superior ability of the LTG animals to handle distress. We conclude that the long-term experimental use of marmosets does not impair their fertility or health status per se, supporting the view that animal reuse can be in accordance with the 3R-principle, implying reduction, replacement, and refinement in animal experimentation.
ISSN:2076-2615
2076-2615
DOI:10.3390/ani12182414