Extracellular calcium functions as a molecular glue for transmembrane helices to activate the scramblase Xkr4

The “eat me” signal, phosphatidylserine is exposed on the surface of dying cells by phospholipid scrambling. Previously, we showed that the Xkr family protein Xkr4 is activated by caspase-mediated cleavage and binding of the XRCC4 fragment. Here, we show that extracellular calcium is an additional f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2023-09, Vol.14 (1), p.5592-13, Article 5592
Hauptverfasser: Zhang, Panpan, Maruoka, Masahiro, Suzuki, Ryo, Katani, Hikaru, Dou, Yu, Packwood, Daniel M., Kosako, Hidetaka, Tanaka, Motomu, Suzuki, Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The “eat me” signal, phosphatidylserine is exposed on the surface of dying cells by phospholipid scrambling. Previously, we showed that the Xkr family protein Xkr4 is activated by caspase-mediated cleavage and binding of the XRCC4 fragment. Here, we show that extracellular calcium is an additional factor needed to activate Xkr4. The constitutively active mutant of Xkr4 is found to induce phospholipid scrambling in an extracellular, but not intracellular, calcium-dependent manner. Importantly, other Xkr family members also require extracellular calcium for activation. Alanine scanning shows that D123 and D127 of TM1 and E310 of TM3 coordinate calcium binding. Moreover, lysine scanning demonstrates that the E310K mutation-mediated salt bridge between TM1 and TM3 bypasses the requirement of calcium. Cysteine scanning proves that disulfide bond formation between TM1 and TM3 also activates phospholipid scrambling without calcium. Collectively, this study shows that extracellular calcium functions as a molecular glue for TM1 and TM3 of Xkr proteins for activation, thus demonstrating a regulatory mechanism for multi-transmembrane region-containing proteins. Dying cells display an “eat me” signal through phospholipid scrambling. Here, the authors show that activation of the plasma membrane-bound Xkr4 scramblase requires extracellular calcium as a “molecular glue” for connecting transmembrane regions.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-023-40934-2