Application Research of the Sparse Representation of Eigenvector on the PD Positioning in the Transformer Oil
The partial discharge (PD) detection of electrical equipment is important for the safe operation of power system. The ultrasonic signal generated by the PD in the oil is a broadband signal. However, most methods of the array signal processing are used for the narrowband signal at present, and the ef...
Gespeichert in:
Veröffentlicht in: | International journal of antennas and propagation 2016-01, Vol.2016 (2016), p.1-13 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The partial discharge (PD) detection of electrical equipment is important for the safe operation of power system. The ultrasonic signal generated by the PD in the oil is a broadband signal. However, most methods of the array signal processing are used for the narrowband signal at present, and the effect of some methods for processing wideband signals is not satisfactory. Therefore, it is necessary to find new broadband signal processing methods to improve detection ability of the PD source. In this paper, the direction of arrival (DOA) estimation method based on sparse representation of eigenvector is proposed, and this method can further reduce the noise interference. Moreover, the simulation results show that this direction finding method is feasible for broadband signal and thus improve the following positioning accuracy of the three-array localization method. And experimental results verify that the direction finding method based on sparse representation of eigenvector is feasible for the ultrasonic array, which can achieve accurate estimation of direction of arrival and improve the following positioning accuracy. This can provide important guidance information for the equipment maintenance in the practical application. |
---|---|
ISSN: | 1687-5869 1687-5877 |
DOI: | 10.1155/2016/1343194 |