Emulsion Surimi Gel with Tunable Gel Properties and Improved Thermal Stability by Modulating Oil Types and Emulsification Degree

High resistance to heating treatments is a prerequisite for ready-to-eat (RTE) surimi products. In this study, emulsion-formulated surimi gels were prepared, and the effects of oil types and emulsification degrees on the thermal stability of surimi gel were investigated. The results showed the gel p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Foods 2022-01, Vol.11 (2), p.179
Hauptverfasser: Zhu, Shichen, Chen, Xiaocao, Zheng, Jiani, Fan, Wenlong, Ding, Yuting, Zhou, Xuxia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:High resistance to heating treatments is a prerequisite for ready-to-eat (RTE) surimi products. In this study, emulsion-formulated surimi gels were prepared, and the effects of oil types and emulsification degrees on the thermal stability of surimi gel were investigated. The results showed the gel properties of surimi gels were modulated by oil types and emulsification degrees. In detail, the rising pre-emulsification ratio caused the increase of the emulsifying activity index (EAI) and decrease of emulsifying stability index (ESI) for both emulsions. The larger droplet sizes of perilla seed oil than soybean oil may be responsible for their emulsifying stability difference. The gel strength, water retention, dynamic modulus and texture properties of both kinds of surimi gels displayed a firstly increased and then decreased tendency with the rising pre-emulsification ratios. The peak values were obtained as perilla seed oil emulsion with emulsification ratio of 20% group (P1) and soybean oil emulsion with emulsification ratio of 40% group (S2), respectively. Anyway, all emulsion gels showed higher thermal stability than the control group regardless of oil types. Similar curves were also obtained for the changes of hydrogen bond, ionic bond and hydrophobic interactions. Overall, perilla seed oil emulsion with emulsification ratio of 20% (P1 group) contributed to the improved thermal stability of surimi gels.
ISSN:2304-8158
2304-8158
DOI:10.3390/foods11020179