Damage Characteristics of Blasting Surrounding Rock in Mountain Tunnel in Fault Fracture Zones Based on the Johnson–Holmquist-2 Model
Blasting is a widely employed technique for tunnel construction in mountainous regions; however, it often causes damage to the surrounding rock mass, particularly in fault fracture zones, which can lead to hazards such as rockfalls and collapses. This study examines the characteristics of damage to...
Gespeichert in:
Veröffentlicht in: | Buildings (Basel) 2024-11, Vol.14 (11), p.3682 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Blasting is a widely employed technique for tunnel construction in mountainous regions; however, it often causes damage to the surrounding rock mass, particularly in fault fracture zones, which can lead to hazards such as rockfalls and collapses. This study examines the characteristics of damage to surrounding rock due to tunnel blasting through fault fracture zones. Based on an actual tunnel blasting construction project, we conducted a finite element analysis using the JH-2 material model, taking into account the width of the fault fracture zone. Results indicate that as the width of the fault fracture zone increases, the disturbance effect of tunnel blasting on the surrounding rock becomes more pronounced. Compared to the arch bottom and arch waist of the tunnel, the tunnel vault primarily absorbs the slip deformation and compressive forces resulting from blasting disturbances in the fault fracture zone. The findings of this paper contribute a valuable methodology for analyzing the mechanical mechanisms in mountain tunnel blasting and provide essential theoretical parameters to inform the design and construction of tunnel blasting projects. |
---|---|
ISSN: | 2075-5309 2075-5309 |
DOI: | 10.3390/buildings14113682 |