Insights into nano-mechanical degradation behavior of Ag/Ti2AlC composite under different arc erosion stages

Serious arc erosion is the main reason for premature failure of the Ag-matrix composite electrical contact materials in actual service. Clarifying the structure and property degradation process is crucial for creating eco-friendly Ag/MAX electrical contacts and upgrading high-performance materials f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials research and technology 2023-11, Vol.27, p.1968-1981
Hauptverfasser: Sun, Wanjie, Shi, Yuxin, Wu, Chengzhe, Wei, Xinpeng, Zhang, Yundeng, Li, Gege, Chen, Liming, Ma, Chengjian, Sun, ZhengMing, Zhang, Peigen, Ding, Jianxiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Serious arc erosion is the main reason for premature failure of the Ag-matrix composite electrical contact materials in actual service. Clarifying the structure and property degradation process is crucial for creating eco-friendly Ag/MAX electrical contacts and upgrading high-performance materials for low-voltage switch applications. In this study, the representative Ag/Ti2AlC electrical contacts were designed into three arc erosion stages (from 1 to 5610 cycles) by ex-situ arc discharging experiment, and the nanoindentation technique was then applied to in-depth analyze the evolution behavior of nano-mechanical properties by comparing nano hardness, modulus, creep, continuous stiffness, elastic/plastic deformation, and NanoBlitz 3D Mapping indentation results in different erosion stages. Finally, the inherent relationship among the structural dissociation of Ti2AlC, and compositional changes of Ag/Ti2AlC interface and nano-mechanical properties of composite was revealed, and the material degradation model and anti-arc erosion mechanism were proposed. This work further elucidates the intrinsic source of excellent arc erosion resistance and degradation process of Ag/Ti2AlC composite from the nano-mechanical perspective and lays a theoretical foundation for the future design and optimization of this material system.
ISSN:2238-7854
DOI:10.1016/j.jmrt.2023.10.057