Analysis of the thermal insulation performance of cement with waste glass powder in geothermal well

To improve the heat extraction efficiency from the wellbore fluids to the stratum in the geothermal well, thermal insulation cement, which contains of waste glass powder as a heat-insulating material, is proposed to apply in geothermal well’s middle and upper sections in the paper. Effect of such gl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2024-08, Vol.14 (1), p.18488-14, Article 18488
Hauptverfasser: Ji, Ying, Song, Li, Sha, Qianqian, Zhu, Gang, Xue, Yuze, Zhang, Tinghui, Fan, Shuai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To improve the heat extraction efficiency from the wellbore fluids to the stratum in the geothermal well, thermal insulation cement, which contains of waste glass powder as a heat-insulating material, is proposed to apply in geothermal well’s middle and upper sections in the paper. Effect of such glass powers on mechanic and thermal property of thermal insulation cement was then investigated. Various tests were carried out to measure compressive strength, thermal conductivity, microstructure porosity etc. parameters of the thermal insulation cement. Results showed that the waste glass powder would enhance its the compressive strength and improve its the thermal insulation performance. Correlation study between contents of the added waste glass powder in geothermal cements and its mechanic and thermal property was conducted. It was found that thermal insulation cement exhibited its optimum performance when the added content of glass powers was 20% in weight. Analysis of the microstructure porosity with SEM found that the pores in thermal insulation cement with added waste glass powders were mostly closed, tiny and even, and therefore contributed to the compressive strength of the thermal insulation cement; such pores would be also beneficial to improving its thermal insulation performance.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-024-67546-0