Anomaly detection at the European X-ray Free Electron Laser using a parity-space-based method

A novel approach to detect anomalies in superconducting radio-frequency (rf) cavities is presented, based on the parity space method with the goal to detect quenches and distinguish them from other anomalies. The model-based parity space method relies on analytical redundancy and generates a residua...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. Accelerators and beams 2023-01, Vol.26 (1), p.012801, Article 012801
Hauptverfasser: Eichler, A., Branlard, J., Timm, J. H. K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A novel approach to detect anomalies in superconducting radio-frequency (rf) cavities is presented, based on the parity space method with the goal to detect quenches and distinguish them from other anomalies. The model-based parity space method relies on analytical redundancy and generates a residual signal computed from measurable rf waveforms. The residual is a sensitive indicator of deviation from the model and provides different signatures for different types of anomalies. This new method not only helps with detecting faults but also provides a catalog of unique signatures, based on the detected fault. The method was experimentally verified at the European X-ray Free Electron Laser (EuXFEL). Various types of anomalies incorrectly detected as quenches by the current quench detection system are analyzed using this new approach.
ISSN:2469-9888
2469-9888
DOI:10.1103/PhysRevAccelBeams.26.012801