IML-Net: A Framework for Cross-View Geo-Localization with Multi-Domain Remote Sensing Data

Cross-view geolocation is a valuable yet challenging task. In practical applications, the images targeted by cross-view geolocation technology encompass multi-domain remote sensing images, including those from different platforms (e.g., drone cameras and satellites), different perspectives (e.g., na...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Remote sensing (Basel, Switzerland) Switzerland), 2024-04, Vol.16 (7), p.1249
Hauptverfasser: Yan, Yiming, Wang, Mengyuan, Su, Nan, Hou, Wei, Zhao, Chunhui, Wang, Wenxuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cross-view geolocation is a valuable yet challenging task. In practical applications, the images targeted by cross-view geolocation technology encompass multi-domain remote sensing images, including those from different platforms (e.g., drone cameras and satellites), different perspectives (e.g., nadir and oblique), and different temporal conditions (e.g., various seasons and weather conditions). Based on the characteristics of these images, we have designed an effective framework, Image Reconstruction and Multi-Unit Mutual Learning Net (IML-Net), for accomplishing cross-view geolocation tasks. By incorporating a deconvolutional network into the architecture to reconstruct images, we can better bridge the differences in remote sensing image features across different domains. This enables the mapping of target images from different platforms and perspectives into a shared latent space representation, obtaining more discriminative feature descriptors. The process enhances the robustness of feature extraction for locating targets across a wide range of perspectives. To improve the network’s performance, we introduce attention regions learned from different units as augmented data during the training process. For the current cross-view geolocation datasets, the use of large-scale datasets is limited due to high costs and privacy concerns, leading to the prevalent use of simulated data. However, real data allow the network to learn more generalizable features. To make the model more robust and stable, we collected two groups of multi-domain datasets from the Zurich and Harbin regions, incorporating real data into the cross-view geolocation task to construct the ZHcity750 Dataset. Our framework is evaluated on the cross-domain ZHcity750 Dataset, which shows competitive results compared to state-of-the-art methods.
ISSN:2072-4292
2072-4292
DOI:10.3390/rs16071249