ICP8-vhs- HSV-2 Vaccine Expressing B7 Costimulation Molecules Optimizes Safety and Efficacy against HSV-2 Infection in Mice
Herpes simplex virus 2 (HSV-2) causes most sexually transmitted genital ulcerative disease. No effective prophylactic vaccine is currently available. Replication-defective (ICP8-) HSV stimulates immune responses in animals without producing progeny virus, making it potentially useful as a safe form...
Gespeichert in:
Veröffentlicht in: | Viruses 2023-07, Vol.15 (7), p.1570 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Herpes simplex virus 2 (HSV-2) causes most sexually transmitted genital ulcerative disease. No effective prophylactic vaccine is currently available. Replication-defective (ICP8-) HSV stimulates immune responses in animals without producing progeny virus, making it potentially useful as a safe form of a live vaccine against HSV. We previously demonstrated that mice generate a stronger response to ICP8- virus encoding B7-2 costimulation molecules than to the parental replication-defective virus. We have also demonstrated enhanced immunogenicity of an ICP8-, virion host shutoff (vhs)- virus which can no longer destabilize viral and host mRNAs. Here, we constructed a triple mutant, ICP8-vhs-B7-2+ strain, and compared it to both double mutant viruses. Immunization of mice with a single dose of ICP8-B7-2+ or ICP8-vhs-B7-2+ virus decreased challenge virus replication in the vaginal mucosa, genital disease, and mortality more effectively than immunization with the ICP8-vhs- virus. Immunization with ICP8-B7-2+ or ICP8-vhs-B7-2+ virus also effectively suppressed subsequent HSV-2 infection of the nervous system compared to immunization with the ICP8-vhs- virus. ICP8-B7-2+ and ICP8-vhs-B7-2+ strains induced more IFN gamma-producing CD8 T cells and memory CD8 T cells than did ICP8-vhs- virus, potentially explaining the enhanced protective effects. Thus, B7 costimulation molecules expressed from a replication-defective vaccine can enhance vaccine efficacy, even in an immunocompetent host. |
---|---|
ISSN: | 1999-4915 1999-4915 |
DOI: | 10.3390/v15071570 |