Preparative free-solution isotachophoresis for separation of human plasma lipoproteins: apolipoprotein and lipid composition of HDL subfractions

We have previously shown that plasma lipoproteins can be separated by analytical capillary isotachophoresis (ITP) according to their electrophoretic mobility in a defined buffer system. As in lipoprotein electrophoresis, HDL show the highest mobility followed by VLDL, IDL, and LDL. Chylomicrons migr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of lipid research 2000-06, Vol.41 (6), p.905-915
Hauptverfasser: Böttcher, A, Schlosser, J, Kronenberg, F, Dieplinger, H, Knipping, G, Lackner, K J, Schmitz, G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We have previously shown that plasma lipoproteins can be separated by analytical capillary isotachophoresis (ITP) according to their electrophoretic mobility in a defined buffer system. As in lipoprotein electrophoresis, HDL show the highest mobility followed by VLDL, IDL, and LDL. Chylomicrons migrate according to their net-charge between HDL and VLDL, because ITP has negligible molecular sieve effects. Three HDL subfractions were obtained which were designated fast-, intermediate-, and slow-migrating HDL. To further characterize these HDL subfractions, a newly developed free-solution ITP (FS-ITP)-system was used, that allows micro-preparative separation of human lipoproteins directly from whole plasma (Böttcher, A. et al. 1998. Electrophoresis. 19: 1110-1116). The fractions obtained by FS-ITP were analyzed for their lipid and apolipoprotein composition and by two-dimensional nondenaturing polyacrylamide gradient gel electrophoresis (2D-GGE) with subsequent immunoblotting. fHDL are characterized by the highest proportion of esterified cholesterol of all three subfractions and are relatively enriched in LpA-I. Together with iHDL they contain the majority of plasma apoA-I, while sHDL contain the majority of plasma apoA-IV, apoD, apoE, and apoJ. Pre-beta-HDL were found in separate fractions together with triglyceride-rich fractions between sHDL and LDL. In summary, ITP can separate the bulk of HDL into lipoprotein subfractions, which differ in apolipoprotein composition and electrophoretic mobility. While analytical ITP permits rapid separation and quantitation for diagnostic purposes, FS-ITP can be used to obtain these lipoprotein subfractions on a preparative scale for functional analysis. As FS-ITP is much better suited for preparative purposes than gel electrophoresis, it represents an important novel tool for the functional analysis of lipoprotein subclasses.
ISSN:0022-2275
DOI:10.1016/s0022-2275(20)32032-0