Effects of Glutamine on Rumen Digestive Enzymes and the Barrier Function of the Ruminal Epithelium in Hu Lambs Fed a High-Concentrate Finishing Diet

The present experiment aimed to research the effects of glutamine (Gln) on the digestive and barrier function of the ruminal epithelium in Hu lambs fed a high-concentrate finishing diet containing some soybean meal and cottonseed meal. Thirty healthy 3-month-old male Hu lambs were randomly divided i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Animals (Basel) 2022-12, Vol.12 (23), p.3418
Hauptverfasser: Wu, Qiujue, Xing, Zhongying, Liao, Jiahui, Zhu, Longlong, Zhang, Rongkai, Wang, Saiqiao, Wang, Cong, Ma, Yan, Wang, Yuqin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The present experiment aimed to research the effects of glutamine (Gln) on the digestive and barrier function of the ruminal epithelium in Hu lambs fed a high-concentrate finishing diet containing some soybean meal and cottonseed meal. Thirty healthy 3-month-old male Hu lambs were randomly divided into three treatments. Lambs were fed a high-concentrate diet and supplemented with 0, 0.5, and 1% Gln on diet for 60 days. The experimental results show that the Gln treatment group had lower pepsin and cellulase enzyme activity, propionate acid concentration, and IL-6, TNF-α, claudin-1, and ZO-1 mRNA expression in the ruminal epithelium (p < 0.05); as well as increases in lipase enzyme activity, the ratio of propionic acid to acetic acid, the IL-10 content in the plasma, and the mRNA expression of IL-2 and IL-10 in the ruminal epithelium, in contrast to the CON (control group) treatment (p < 0.05). Taken together, the findings of this present study support the addition of Gln to improve digestive enzyme activity, the ruminal epithelium’s barrier, and fermentation and immune function by supplying energy to the mononuclear cells, improving the ruminal epithelium’s morphology and integrity, and mediating the mRNA expression of tight junction proteins (TJs) and cytokines.
ISSN:2076-2615
2076-2615
DOI:10.3390/ani12233418