A hybrid fusion precipitation bias correction approach for Yin‐He global spectral model

In this article, we explored the performance of several fusion strategies for bias correction of precipitation on U‐Net‐based‐models and proposed a simple but efficient hybrid fusion strategy. The geopotential, vertical velocity, specific humidity and 3‐h cumulative precipitation from Yin‐He global...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Meteorological applications 2022-09, Vol.29 (5), p.n/a
Hauptverfasser: Hu, Yi‐Fan, Yin, Fu‐Kang, Zhang, Wei‐Min, Deng, Ke‐Feng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this article, we explored the performance of several fusion strategies for bias correction of precipitation on U‐Net‐based‐models and proposed a simple but efficient hybrid fusion strategy. The geopotential, vertical velocity, specific humidity and 3‐h cumulative precipitation from Yin‐He global spectral model (YHGSM) re‐forecast products are used as multiple correction factors, and the 3‐h cumulative precipitation calculated from ERA5 are used as labels. Experimental results reveal that, our hybrid fusion strategy can reduce the number of parameters by about 40% and obtain better fraction skill score (FSS) and threat score (TS). For TS of 0.1, 3.0, 10.0 and 20. 0 mm, U‐Net with hybrid fusion improves 31.8%, 97.0%, 314.0% and 576.0% than YHGSM, improves 1.3%, 3.0%, 3.6% and 10.5% than the classical U‐Net. This hybrid fusion strategy should provide a feasible approach to utilize multiple information inputs more efficiently in geophysics field. Deep learning models architecture used in this paper. (a) U‐net; (b) UNet++; (c) Squeeze‐and‐Excitation (SE) block.
ISSN:1350-4827
1469-8080
DOI:10.1002/met.2097