A Credit Rating Model in a Fuzzy Inference System Environment

One of the most important functions of an export credit agency (ECA) is to act as an intermediary between national governments and exporters. These organizations provide financing to reduce the political and commercial risks in international trade. The agents assess the buyers based on financial and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Algorithms 2019-07, Vol.12 (7), p.139
Hauptverfasser: Amir Karbassi Yazdi, Thomas, Hanne, Wang, Yong J, Hui-Ming, Wee
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:One of the most important functions of an export credit agency (ECA) is to act as an intermediary between national governments and exporters. These organizations provide financing to reduce the political and commercial risks in international trade. The agents assess the buyers based on financial and non-financial indicators to determine whether it is advisable to grant them credit. Because many of these indicators are qualitative and inherently linguistically ambiguous, the agents must make decisions in uncertain environments. Therefore, to make the most accurate decision possible, they often utilize fuzzy inference systems. The purpose of this research was to design a credit rating model in an uncertain environment using the fuzzy inference system (FIS). In this research, we used suitable variables of agency ratings from previous studies and then screened them via the Delphi method. Finally, we created a credit rating model using these variables and FIS including related IF-THEN rules which can be applied in a practical setting.
ISSN:1999-4893
1999-4893
DOI:10.3390/a12070139