Glycosyl hydrolase from Pseudomonas fluorescens inhibits the biofilm formation of Pseudomonads

Biofilms are complex microbial communities embedded in extracellular matrix. Pathogens within the biofilm become more resistant to the antibiotics than planktonic counterparts. Novel strategies are required to encounter biofilms. Exopolysaccharides are one of the major components of biofilm matrix a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biofilm 2023-12, Vol.6, p.100155-100155, Article 100155
Hauptverfasser: Wang, Di, Naqvi, Syed Tatheer Alam, Lei, Fanglin, Zhang, Zhenyu, Yu, Haiying, Ma, Luyan Z.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Biofilms are complex microbial communities embedded in extracellular matrix. Pathogens within the biofilm become more resistant to the antibiotics than planktonic counterparts. Novel strategies are required to encounter biofilms. Exopolysaccharides are one of the major components of biofilm matrix and play a vital role in biofilm architecture. In previous studies, a glycosyl hydrolase, PslGPA, from Pseudomonas aeruginosa was found to be able to inhibit biofilm formation by disintegrating exopolysaccharide in biofilms. Here, we investigate the potential spectrum of PslG homologous protein with anti-biofilm activity. One glycosyl hydrolase from Pseudomonas fluorescens, PslGPF, exhibits anti-biofilm activities and the key catalytic residues of PslGPF are conserved with those of PslGPA. PslGPF at concentrations as low as 50 nM efficiently inhibits the biofilm formation of P. aeruginosa and disassemble its preformed biofilm. Furthermore, PslGPF exhibits anti-biofilm activity on a series of Pseudomonads, including P. fluorescens, Pseudomonas stutzeri and Pseudomonas syringae pv. phaseolicola. PslGPF stays active under various temperatures. Our findings suggest that P. fluorescens glycosyl hydrolase PslGPF has potential to be a broad spectrum inhibitor on biofilm formation of a wide range of Pseudomonads.
ISSN:2590-2075
2590-2075
DOI:10.1016/j.bioflm.2023.100155