Inhibition of Oncogenic Src Ameliorates Silica-Induced Pulmonary Fibrosis via PI3K/AKT Pathway
Silicosis is a refractory disease. Previous studies indicate that damaged alveolar epithelial cells act as a driver in pulmonary fibrosis. Our results show that epithelial cells that acquire the mesenchymal phenotype are associated with the pathogenesis of silicosis. c-Src kinase, a non-receptor tyr...
Gespeichert in:
Veröffentlicht in: | International journal of molecular sciences 2023-01, Vol.24 (1), p.774 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Silicosis is a refractory disease. Previous studies indicate that damaged alveolar epithelial cells act as a driver in pulmonary fibrosis. Our results show that epithelial cells that acquire the mesenchymal phenotype are associated with the pathogenesis of silicosis. c-Src kinase, a non-receptor tyrosine kinase, has been shown to be a positive regulator of organ fibrosis, but specific mechanisms remain unclear and rarely researched in silicosis. The activated Phosphatidylinositol-3 kinases/AKT(PI3K/AKT) pathway promotes fibrosis. We aimed to determine whether c-Src regulates fibrosis via the PI3K/AKT signaling pathway in the development of silicosis. C57/BL mice were intratracheally perfused with 10 mg silica suspension to establish a model of silicosis. In vivo, silica particles induced lung fibrosis. The profibrotic cytokine transforming growth factor-β1 (TGF-β1) exhibited a high expression in pulmonary fibrosis. The phosphorylated c-Src protein was increased and the PI3K/AKT pathway was activated in model lung tissue. In vitro, silica increased the expression of TGF-β1- and TGF-β1-induced mesenchymal phenotype and fibrosis in a mouse epithelial cells line. siRNA-Src inhibited the c-Src, the phosphorylation of the PI3K/AKT pathway, and the mesenchymal phenotype induced by TGF-β1. LY294002, a specific inhibitor of PI3K, suppressed the phosphorylation of PI3K/AKT but did not affect Src activation. SU6656, a selective Src inhibitor, attenuated fibrosis in silicosis model. In summary, c-Src promotes fibrosis via the PI3K/AKT pathway in silica-induced lung fibrosis, and Src kinase inhibitors are potentially effective for silicosis treatment. |
---|---|
ISSN: | 1422-0067 1661-6596 1422-0067 |
DOI: | 10.3390/ijms24010774 |