Effect of Dietary Supplementation of Lactiplantibacillus plantarum N-1 and Its Synergies with Oligomeric Isomaltose on the Growth Performance and Meat Quality in Hu Sheep

Probiotics have gained tremendous attention as an alternative to antibiotics, while synbiotics may exhibit a greater growth promoting effect than their counterpart probiotics due to the prebiotics' promotion on the growth and reproduction of probiotics. The objective of this study was to invest...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Foods 2023-04, Vol.12 (9), p.1858
Hauptverfasser: Zhou, Zhiqiang, Xu, Xinyi, Luo, Dongmei, Zhou, Zhiwei, Zhang, Senlin, He, Ruipeng, An, Tianwu, Sun, Qun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Probiotics have gained tremendous attention as an alternative to antibiotics, while synbiotics may exhibit a greater growth promoting effect than their counterpart probiotics due to the prebiotics' promotion on the growth and reproduction of probiotics. The objective of this study was to investigate the influence of N-1 and its synbiotic with oligomeric isomaltose on the growth performance and meat quality of Hu sheep. Hu sheep (0-3 days old) were fed with water, probiotics of N-1, or synbiotics (N-1 and oligomeric isomaltose) daily in three pens for 60 days and regularly evaluated to measure growth performance and collect serum (five lambs per group). (LT) and (BB) muscle tissues were collected for the analysis of pH value, color, texture, nutrients, mineral elements, amino acids, volatile compounds, and antioxidant capacity. The results showed that dietary supplementation of N-1 tended to improve growth performance and meat quality of Hu sheep, while the synergism of N-1 with oligomeric isomaltose significantly improved their growth performance and meat quality ( < 0.05). Both the dietary supplementation of N-1 and synbiotics ( < 0.05) increased the body weight and body size of Hu sheep. Synbiotic treatment reduced serum cholesterol and improved LT fat content by increasing the transcription level of fatty acid synthase to enhance fat deposition in LT, as determined via RT-qPCR analysis. Moreover, synbiotics increased zinc content and improved LT tenderness by decreasing shear force and significantly increased the levels of certain essential (Thr, Phe, and Met) and non-essential (Asp, Ser, and Tyr) amino acids of LT ( < 0.05). Additionally, synbiotics inhibited the production of carbonyl groups and TBARS in LT and thus maintained antioxidant stability. In conclusion, it is recommended that the use of synbiotics in livestock breeding be promoted to improve sheep production and meat quality.
ISSN:2304-8158
2304-8158
DOI:10.3390/foods12091858