Microbial Fuel Cells as Effective Tools for Energy Recovery and Antibiotic Detection in Water and Food

This work demonstrates that microbial fuel cells (MFCs), optimized for energy recovery, can be used as an effective tool to detect antibiotics in water-based environments. In MFCs, electroactive biofilms function as biocatalysts by converting the chemical energy of organic matter, which serves as th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Micromachines (Basel) 2023-11, Vol.14 (12), p.2137
Hauptverfasser: Massaglia, Giulia, Spisni, Giacomo, Pirri, Candido F, Quaglio, Marzia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This work demonstrates that microbial fuel cells (MFCs), optimized for energy recovery, can be used as an effective tool to detect antibiotics in water-based environments. In MFCs, electroactive biofilms function as biocatalysts by converting the chemical energy of organic matter, which serves as the fuel, into electrical energy. The efficiency of the conversion process can be significantly affected by the presence of contaminants that act as toxicants to the biofilm. The present work demonstrates that MFCs can successfully detect antibiotic residues in water and water-based electrolytes containing complex carbon sources that may be associated with the food industry. Specifically, honey was selected as a model fuel to test the effectiveness of MFCs in detecting antibiotic contamination, and tetracycline was used as a reference antibiotic within this study. The results show that MFCs not only efficiently detect the presence of tetracycline in both acetate and honey-based electrolytes but also recover the same performance after each exposure cycle, proving to be a very robust and reliable technology for both biosensing and energy recovery.
ISSN:2072-666X
2072-666X
DOI:10.3390/mi14122137