Cancer-Associated Immune Resistance and Evasion of Immune Surveillance in Colorectal Cancer

Data from molecular profiles of tumors and tumor associated cells provide a model in which cancer cells can acquire the capability of avoiding immune surveillance by expressing an immune-like phenotype. Recent works reveal that expression of immune antigens (PDL1, CD47, CD73, CD14, CD68, MAC387, CD1...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Gastroenterology research and practice 2016-01, Vol.2016 (2016), p.1-8
Hauptverfasser: Febbraro, Antonio, Laudanna, Carmelo, Giordano, Guido, Parcesepe, Pietro, Pancione, Massimo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Data from molecular profiles of tumors and tumor associated cells provide a model in which cancer cells can acquire the capability of avoiding immune surveillance by expressing an immune-like phenotype. Recent works reveal that expression of immune antigens (PDL1, CD47, CD73, CD14, CD68, MAC387, CD163, DAP12, and CD15) by tumor cells “immune resistance,” combined with prometastatic function of nonmalignant infiltrating cells, may represent a strategy to overcome the rate-limiting steps of metastatic cascade through (a) enhanced interactions with protumorigenic myeloid cells and escape from T-dependent immune response mediated by CD8+ and natural killer (NK) cells; (b) production of immune mediators that establish a local and systemic tumor-supportive environment (premetastatic niche); (c) ability to survive either in the peripheral blood as circulating tumor cells (CTCs) or at the metastatic site forming a cooperative prometastatic loop with foreign “myeloid” cells, macrophages, and neutrophils, respectively. The development of cancer-specific “immune resistance” can be orchestrated either by cooperation with tumor microenvironment or by successive rounds of genetic/epigenetic changes. Recognition of the applicability of this model may provide effective therapeutic avenues for complete elimination of immune-resistant metastatic cells and for enhanced antitumor immunity as part of a combinatorial strategy.
ISSN:1687-6121
1687-630X
DOI:10.1155/2016/6261721