Evaluating the scale-up of a reactor for the treatment of textile effluents using Bjerkandera sp
Effluents from the textile industry have a negative environmental impact due to their high load of dyes and hard-to-remove compounds: additives, detergents, and surfactants; these must be treated before effluents can be discharged into water. White-rot fungi show great potential for the bioremediati...
Gespeichert in:
Veröffentlicht in: | Revista Facultad de Ingeniería 2018-09 (88), p.80-90 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Effluents from the textile industry have a negative environmental impact due to their high load of dyes and hard-to-remove compounds: additives, detergents, and surfactants; these must be treated before effluents can be discharged into water. White-rot fungi show great potential for the bioremediation of water and soil matrices contaminated with recalcitrant pollutants (these are generally toxic). In this work, we designed a 5 L fixed bed reactor and evaluated its performance on the degradation of pollutants in effluents from the textile industry in continuous-operation mode under non-sterile conditions, using ligninolytic fungus Bjerkandera sp. (anamorphic state R1). This setup was based on a previous design of a 0.25 L fixed-bed model bioreactor. The system was designed by taking into account the geometric and hydrodynamic similarities of both setups. In continuous-mode color-removal assays, the bioreactor was operated at a 36 h Hydraulic retention time (HRT), a 1 L/min air flux at 33 °C, and a dye concentration of 75 g/L (sulfur black 1) and 6.5 g/L (indigo Vat blue 1). 69% of the dye was removed, and changes in the chemical structures of the dyes confirmed the ligninolytic activity of the microorganism as the main dye removal mechanism.. |
---|---|
ISSN: | 0120-6230 2357-5328 2422-2844 |
DOI: | 10.17533/udea.redin.n88a09 |