Hybrid collagen–cellulose–Fe3O4@TiO2 magnetic bio-sponges derived from animal skin waste and Kenaf fibers for wastewater remediation
Water pollution from synthetic dyes and oil spills has a significant impact on the environment and living species. Here, we developed a low-cost, environmentally friendly and easily biodegradable magnetic hybrid bio-sponge nanocomposite from renewable resources such as collagen and cellulose (Kenaf...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2023-08, Vol.13 (1), p.13365-13365, Article 13365 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Water pollution from synthetic dyes and oil spills has a significant impact on the environment and living species. Here, we developed a low-cost, environmentally friendly and easily biodegradable magnetic hybrid bio-sponge nanocomposite from renewable resources such as collagen and cellulose (Kenaf fibre cellulose–collagen, KFCC). We loaded it with magnetic bimetallic Fe
3
O
4
@TiO
2
(BFT) NPs to produce a photocatalyst material (KFCC-BFT) for the treatment of colored wastewater as well as a sorbent for oil–water separation. The characterization of the bimetallic BFT NPs by XRD, HRTEM and VSM showed the deposition of TiO
2
particles onto the surface of Fe
3
O
4
with lattice interlayers spacing of 0.24 and 0.33 nm for Fe
3
O
4
and TiO
2
, respectively with ferromagnetic property. The UV–vis diffuse reflectance spectra result indicated that the band gap energy of bio-sponges decreases with the increase of the bimetallic moiety. The photocatalytic efficiency of the as-prepared magnetic hybrid bio-sponge in the degradation of crystal violet dye was up to 91.2% under visible light conditions and 86.6% under direct sunlight exposure. Furthermore, the magnetic hybrid bio-sponge was used to separate motor oil from water (> 99%) and had a high oil sorption capacity of 46.1 g/g. Investigation of the recyclability and reusability performance for 9 cycles revealed that the bio-sponge had a high sorption capacity for up to 5 cycles. Our results suggest that the bio-polymer-supported BFT hybrid nanocomposite is a cost-effective and easily biodegradable photocatalyst and has great potential for real-field environmental remediation applications. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-023-40520-y |