Prediction of Sea Surface Reflectivity under Different Sea Conditions Based on the Clustering of Marine Environmental Parameters

The high-precision prediction of sea clutter reflectivity is helpful in improving the performance of marine radar and sea surface remote sensing capabilities. Under the same sea state, when the significant wave height, wave period, wind speed, and other marine environmental parameters are different,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Remote sensing (Basel, Switzerland) Switzerland), 2023-11, Vol.15 (22), p.5318
Hauptverfasser: Li, Yalan, Ma, Liwen, Zhang, Yushi, Wu, Tao, Zhang, Jinpeng, Li, Haiying
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The high-precision prediction of sea clutter reflectivity is helpful in improving the performance of marine radar and sea surface remote sensing capabilities. Under the same sea state, when the significant wave height, wave period, wind speed, and other marine environmental parameters are different, the backward reflectivity of the sea clutter corresponding to the wave structure is not the same. Due to the complex and variable nature of sea clutter characteristics across various wave structures, a meticulous classification of wave structures by integrating multiple marine environmental parameters enables the achievement of the high-precision prediction of sea clutter reflectivity. In this study, utilizing measured data of diverse marine environmental parameters in the Yellow Sea, China, we applied the Affinity Propagation algorithm to data clustering. Based on the clustering outcomes, we accomplished a refined classification of wave structures and developed a discriminant model to precisely classify the refined wave structure, facilitating the categorization of new data. In order to achieve more accurate predictions of sea clutter reflectivity, this paper proposes a deep neural network model named GIT-HYB-DNN, which combines the empirical models GIT and HYB. The GIT-HYB-DNN model is applied to predict the reflectivity for each wave structure category separately. The results demonstrate that the root mean square errors of sea clutter reflectivity predictions for different wave structure categories in this study range from 0.62 dB to 0.84 dB. The prediction errors are significantly reduced compared to the root mean square error of 1.08 dB, which was obtained without refined wave structure classification. This study holds theoretical significance and practical value for the investigation of sea clutter characteristics and the selection of radar parameters.
ISSN:2072-4292
2072-4292
DOI:10.3390/rs15225318