Advancements and Future Prospects in Ocean Wave Energy Harvesting Technology Based on Micro-Energy Technology

Marine wave energy exhibits significant potential as a renewable resource due to its substantial energy storage capacity and high energy density. However, conventional wave power generation technologies often suffer from drawbacks such as high maintenance costs, cumbersome structures, and suboptimal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Micromachines (Basel) 2024-09, Vol.15 (10), p.1199
Hauptverfasser: Yang, Weihong, Peng, Jiaxin, Chen, Qiulin, Zhao, Sicheng, Zhuo, Ran, Luo, Yan, Gao, Lingxiao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Marine wave energy exhibits significant potential as a renewable resource due to its substantial energy storage capacity and high energy density. However, conventional wave power generation technologies often suffer from drawbacks such as high maintenance costs, cumbersome structures, and suboptimal conversion efficiencies, thereby limiting their potential. The wave power generation technologies based on micro-energy technology have emerged as promising new approaches in recent years, owing to their inherent advantages of cost-effectiveness, simplistic structure, and ease of manufacturing. This paper provides a comprehensive overview of the current research status in wave energy harvesting through micro-energy technologies, including detailed descriptions of piezoelectric nanogenerators, electromagnetic generators, triboelectric nanogenerators, dielectric elastomer generators, hydrovoltaic generators, and hybrid nanogenerators. Finally, we provide a comprehensive overview of the prevailing issues and challenges associated with these technologies, while also offering insights into the future development trajectory of wave energy harvesting technology.
ISSN:2072-666X
2072-666X
DOI:10.3390/mi15101199