Impact of pilot diesel injection timing on performance and emission characteristics of marine natural gas/diesel dual-fuel engine

In diesel-ignited natural gas marine dual-fuel engines, the pilot diesel injection timing (PDIT) determines the premixing time and ignition moment of the combustible mixture in the cylinder. The PDIT plays a crucial role in the subsequent development of natural gas flame combustion. In this paper, f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2024-05, Vol.14 (1), p.10713-10713, Article 10713
Hauptverfasser: Zhang, Xiao, Gao, Jianqun, Fan, Dawei, Yang, Qizheng, Han, Fangjun, Yu, Hongliang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In diesel-ignited natural gas marine dual-fuel engines, the pilot diesel injection timing (PDIT) determines the premixing time and ignition moment of the combustible mixture in the cylinder. The PDIT plays a crucial role in the subsequent development of natural gas flame combustion. In this paper, four PDITs (− 8 °CA, − 6 °CA, − 4 °CA, and − 2 °CA) were studied. The results show that the advancement of PDIT increased the engine's power, thermal efficiency, and natural gas flame spread velocity, and increased NO emissions and CH 4 emissions of the marine engine. The PDIT affected the ignition delay period and the rapid combustion period to a greater extent than the slow combustion period and the post combustion period. With each 2 °CA advancement of PDIT, the engine's power increased by 69.87 kW, thermal efficiency increased by 0.42%, radial flame spread velocity increased by 2 m/s, axial flame spread velocity increased by 1.7 m/s, NO emissions increased by 6.1%, and CH 4 emissions increased by 3.75%.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-024-61672-5