Improving the efficiency of crystalline silicon solar cell through regulating their temperature using thin films of polyvinyl alcohol
Rising temperatures significantly affect the PV module, decreasing its voltage and lowering output power. Furthermore, temperature rises have been linked to several PV module failures or degradation modes. The purpose of this study analyzes polyvinyl alcohol PVA on crystalline silicon solar cells as...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Rising temperatures significantly affect the PV module, decreasing its voltage and lowering output power. Furthermore, temperature rises have been linked to several PV module failures or degradation modes. The purpose of this study analyzes polyvinyl alcohol PVA on crystalline silicon solar cells as a thermal insulation thin film. PVA thin films were prepared by dip-coating technique with a thickness of 1.15μm. The films exhibit suitable solar cell temperature controlling though it's an effect on masking the ultraviolet wavelength. The maximum temperature variation on the coating solar cell's surface was 4.5 °C as a comparison to a bare solar cell with irradiate exposure time 1800sec, and maximum efficiency obtained 18.99% in which Voc = 0.566 v and Isc = 330.2 mA when compared with bare solar cell 15.07% with benefit efficiency +3.92%. The concentrations of the polyvinyl alcohol influences on thin films and their effect on solar cell parameters are discussed. |
---|---|
ISSN: | 2267-1242 2555-0403 2267-1242 |
DOI: | 10.1051/e3sconf/202128602012 |