LRMSNet: A New Lightweight Detection Algorithm for Multi-Scale SAR Objects

In recent years, deep learning has found widespread application in SAR image object detection. However, when detecting multi-scale targets against complex backgrounds, these models often struggle to strike a balance between accuracy and speed. Furthermore, there is a continuous need to enhance the p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Remote sensing (Basel, Switzerland) Switzerland), 2024-06, Vol.16 (12), p.2082
Hauptverfasser: Wu, Hailang, Sang, Hanbo, Zhang, Zenghui, Guo, Weiwei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In recent years, deep learning has found widespread application in SAR image object detection. However, when detecting multi-scale targets against complex backgrounds, these models often struggle to strike a balance between accuracy and speed. Furthermore, there is a continuous need to enhance the performance of current models. Hence, this paper proposes LRMSNet, a new multi-scale target detection model designed specifically for SAR images in complex backgrounds. Firstly, the paper introduces an attention module designed to enhance contextual information aggregation and capture global features, which is integrated into a backbone network with an expanded receptive field for improving SAR image feature extraction. Secondly, this paper develops an information aggregation module to effectively fuse different feature layers of the backbone network. Lastly, to better integrate feature information at various levels, this paper designs a multi-scale aggregation network. We validate the effectiveness of our method on three different SAR object detection datasets (MSAR-1.0, SSDD, and HRSID). Experimental results demonstrate that LRMSNet achieves outstanding performance with a mean average accuracy (mAP) of 95.2%, 98.9%, and 93.3% on the MSAR-1.0, SSDD, and HRSID datasets, respectively, with only 3.46 M parameters and 12.6 G floating-point operation cost (FLOPs). When compared with existing SAR object detection models on the MSAR-1.0 dataset, LRMSNet achieves state-of-the-art (SOTA) performance, showcasing its superiority in addressing SAR detection challenges in large-scale complex environments and across various object scales.
ISSN:2072-4292
2072-4292
DOI:10.3390/rs16122082