Development and application of a fast and efficient CRISPR-based genetic toolkit in Bacillus amyloliquefaciens LB1ba02

Bacillus amyloliquefaciens is generally recognized as food safe (GRAS) microbial host and important enzyme-producing strain in the industry. B.amyloliquefaciens LB1ba02 is a production strain suitable for secreting mesophilic α-amylase in the industry. Nevertheless, due to the low transformation eff...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Microbial cell factories 2022-05, Vol.21 (1), p.99-13, Article 99
Hauptverfasser: Xin, Qinglong, Chen, Yudan, Chen, Qianlin, Wang, Bin, Pan, Li
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Bacillus amyloliquefaciens is generally recognized as food safe (GRAS) microbial host and important enzyme-producing strain in the industry. B.amyloliquefaciens LB1ba02 is a production strain suitable for secreting mesophilic α-amylase in the industry. Nevertheless, due to the low transformation efficiency and restriction-modification system, the development of its CRISPR tool lags far behind other species and strains from the genus Bacillus. This work was undertaken to develop a fast and efficient gene-editing tool in B.amyloliquefaciens LB1ba02. In this study, we fused the nuclease-deficient mutant Cas9n (D10A) of Cas9 with activation-induced cytidine deaminase (AID) and developed a fast and efficient base editing system for the first time in B. amyloliquefaciens LB1ba02. The system was verified by inactivating the pyrF gene coding orotidine 5'-phosphate decarboxylase and the mutant could grow normally on M9 medium supplemented with 5-fluoroorotic acid (5-FOA) and uridine (U). Our base editing system has a 6nt editing window consisting of an all-in-one temperature-sensitive plasmid that facilitates multiple rounds of genome engineering in B. amyloliquefaciens LB1ba02. The total editing efficiency of this method reached 100% and it achieved simultaneous editing of three loci with an efficiency of 53.3%. In addition, based on the base editing CRISPR/Cas9n-AID system, we also developed a single plasmid CRISPR/Cas9n system suitable for rapid gene knockout and integration. The knockout efficiency for a single gene reached 93%. Finally, we generated 4 genes (aprE, nprE, wprA, and bamHIR) mutant strain, LB1ba02△4. The mutant strain secreted 1.25-fold more α-amylase into the medium than the wild-type strain. The CRISPR/Cas9n-AID and CRISPR/Cas9n systems developed in this work proved to be a fast and efficient genetic manipulation tool in a restriction-modification system and poorly transformable strain.
ISSN:1475-2859
1475-2859
DOI:10.1186/s12934-022-01832-2