A Robotic Solution for Precision Smoothing and Roughening of Precast Concrete Surfaces: Design and Experimental Validation

Prefabricated construction has pioneered a new model in the construction industry, where prefabricated component modules are produced in factories and assembled on-site by construction workers, resulting in a highly efficient and convenient production process. Within the construction industry value...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2024-05, Vol.24 (11), p.3336
Hauptverfasser: Gang, Rui, Duan, Zhongxing, Wang, Lin, Nan, Lemeng, Song, Jintao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Prefabricated construction has pioneered a new model in the construction industry, where prefabricated component modules are produced in factories and assembled on-site by construction workers, resulting in a highly efficient and convenient production process. Within the construction industry value chain, the smoothing and roughening of precast concrete components are critical processes. Currently, these tasks are predominantly performed manually, often failing to achieve the desired level of precision. This paper designs and develops a robotic system for smoothing and roughening precast concrete surfaces, along with a multi-degree-of-freedom integrated intelligent end-effector for smoothing and roughening. Point-to-point path planning methods are employed to achieve comprehensive path planning for both smoothing and roughening, enhancing the diversity of textural patterns using B-spline curves. In the presence of embedded obstacles, a biologically inspired neural network method is introduced for precise smoothing operation planning, and the A* algorithm is incorporated to enable the robot's escape from dead zones. Experimental validation further confirms the feasibility of the entire system and the accuracy of the machining path planning methods. The experimental results demonstrate that the proposed system meets the precision requirements for smoothing and offers diversity in roughening, affirming its practicality in the precast concrete process and expanding the automation level and application scenarios of robots in the field of prefabricated construction.
ISSN:1424-8220
1424-8220
DOI:10.3390/s24113336