Multi-View HRRP Generation With Aspect-Directed Attention GAN

In radar automatic target recognition (RATR), high-resolution range profile (HRRP) has received intensive attention due to its low computational cost. As HRRP is sensitive to the aspect of the target, a training set covering sufficient aspects is essential to the success of an RATR model, which is h...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of selected topics in applied earth observations and remote sensing 2022, Vol.15, p.7643-7656
Hauptverfasser: Song, Yiheng, Zhou, Qiang, Yang, Wei, Wang, Yanhua, Hu, Cheng, Hu, Xueyao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In radar automatic target recognition (RATR), high-resolution range profile (HRRP) has received intensive attention due to its low computational cost. As HRRP is sensitive to the aspect of the target, a training set covering sufficient aspects is essential to the success of an RATR model, which is however intractable in complex environment with noncooperative targets. In this article, an aspect-directed attention generative adversarial network is proposed to generate multiview HRRPs using real samples from few aspects. The key is that the HRRPs from the similar targets share the same aspect variation pattern. Hence, an HRRP is decomposed into its identity and aspect features via an aspect-directed disentangled representation network with self-attention modules. In the training stage, the decomposition network and the aspect variation pattern are learned from full aspect samples of cooperative targets. When generation, the desired multiview HRRPs of the noncooperative target are synthesized by its identity features extracted from few aspect samples and the learned aspect variation pattern. Three types of experiments on the simulated and measured datasets demonstrate the generation performances of our method. First, the generated HRRPs are visually compared with the truth. Second, the similarity of the scattering center power and handcrafted feature distributions are quantitatively evaluated. Finally, recognition experiments verify the feasibility of data augmentation with the generated HRRPs. Extensive results show the superior performance of our method over other state-of-the-art methods.
ISSN:1939-1404
2151-1535
DOI:10.1109/JSTARS.2022.3204439