A decade (2008–2017) of water stable isotope composition of precipitation at Concordia Station, East Antarctica

A 10-year record of oxygen and hydrogen isotopic composition of precipitation is presented here: from 2008 to 2017, 1483 daily precipitation samples were collected year-round on a raised platform at Concordia Station, East Antarctica. Weather data were retrieved from the Italian Antarctic Meteo-Clim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The cryosphere 2024-09, Vol.18 (9), p.3911-3931
Hauptverfasser: Dreossi, Giuliano, Masiol, Mauro, Stenni, Barbara, Zannoni, Daniele, Scarchilli, Claudio, Ciardini, Virginia, Casado, Mathieu, Landais, Amaëlle, Werner, Martin, Cauquoin, Alexandre, Casasanta, Giampietro, Del Guasta, Massimo, Posocco, Vittoria, Barbante, Carlo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A 10-year record of oxygen and hydrogen isotopic composition of precipitation is presented here: from 2008 to 2017, 1483 daily precipitation samples were collected year-round on a raised platform at Concordia Station, East Antarctica. Weather data were retrieved from the Italian Antarctic Meteo-Climatological Observatory automatic weather station (AWS), while ERA5 was used to estimate total precipitation. The δ–temperature relationships were moderately high for daily data (r2=0.63 and 0.64 for δ18O and δ2H, respectively) and stronger using monthly data (r2=0.82 for both δ18O and δ2H), with a slope of about 0.5 ‰ °C−1 for δ18O/TAWS (3.5 ‰ °C−1 for δ2H/TAWS), which remains consistent also using annual averages. The isotopic composition of precipitation is the input signal of the snow–ice system, and this dataset will be useful to improve the interpretation of paleoclimate records and promote a better understanding of the post-depositional processes affecting the isotopic signal in ice cores. This dataset represents a benchmark for the evaluation of isotope-enabled general circulation models. Here, the ECHAM6-wiso output was compared to experimental data, showing moderately good relationships for δ18O and δ2H but not for d-excess, nonetheless marking a substantial improvement from the previous release of the model.
ISSN:1994-0424
1994-0416
1994-0424
1994-0416
DOI:10.5194/tc-18-3911-2024