Is current disruption associated with an inverse cascade?

Current disruption (CD) and the related kinetic instabilities in the near-Earth magnetosphere represent physical mechanisms which can trigger multi-scale substorm activity including global reorganizations of the magnetosphere. Lui et al. (2008) proposed a CD scenario in which the kinetic scale linea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear processes in geophysics 2010-06, Vol.17 (3), p.287-292
Hauptverfasser: Vörös, Z., Runov, A., Leubner, M. P., Baumjohann, W., Volwerk, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Current disruption (CD) and the related kinetic instabilities in the near-Earth magnetosphere represent physical mechanisms which can trigger multi-scale substorm activity including global reorganizations of the magnetosphere. Lui et al. (2008) proposed a CD scenario in which the kinetic scale linear modes grow and reach the typical dipolarization scales through an inverse cascade. The experimental verification of the inverse nonlinear cascade is based on wavelet analysis. In this paper the Hilbert-Huang transform is used which is suitable for nonlinear systems and allows to reconstruct the time-frequency representation of empirical decomposed modes in an adaptive manner. It was found that, in the Lui et al. (2008) event, the modes evolve globally from high-frequencies to low-frequencies. However, there are also local frequency evolution trends oriented towards high-frequencies, indicating that the underlying processes involve multi-scale physics and non-stationary fluctuations for which the simple inverse cascade scenario is not correct.
ISSN:1607-7946
1023-5809
1607-7946
DOI:10.5194/npg-17-287-2010