Synthesis and Performance of NaTi2(PO4)3/VGCF@C Anode Composite Material for Aqueous Sodium-Ion Batteries
This study combines self-prepared NaTi2(PO4)3 (NTP) with commercial vapor-grown carbon fiber (VGCF) using a solid state calcination, then coats it with carbon to synthesize the composite anode material NaTi2(PO4)3/VGCF@C (NTP/VGCF@C). The microstructure and electrochemical properties of the composit...
Gespeichert in:
Veröffentlicht in: | Batteries (Basel) 2023-05, Vol.9 (5), p.265 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This study combines self-prepared NaTi2(PO4)3 (NTP) with commercial vapor-grown carbon fiber (VGCF) using a solid state calcination, then coats it with carbon to synthesize the composite anode material NaTi2(PO4)3/VGCF@C (NTP/VGCF@C). The microstructure and electrochemical properties of the composite material were then analyzed using microstructure analysis and electrochemical testing equipment. Single phase NTP shows nanoparticles with a polyhedral structure, and there is good contact at the interface between the nanoparticles and the VGCFs. The carbon coating formed on the NTP particles displays a nearly 6.5 nm thick layer of amorphous carbon. From the coin-cell battery performance measurements, after 850 cycles, the composite material NTP/VGCF@C exhibits an excellent retention rate of 96.3% compared to that of the pure NTP material when the current density is 200 mA/g. As a result, the composite material and lithium manganate (denoted as LMO) were assembled into an LMO-NTP/VGCF@C aqueous sodium-ion soft pack full battery system. The full battery shows an initial capacity of 31.07 mAh at a rate of 0.5C, and a reversible discharge capacity retention rate of 95.8% after 480 cycles, exhibiting a good long-cycle stability performance. |
---|---|
ISSN: | 2313-0105 2313-0105 |
DOI: | 10.3390/batteries9050265 |