Influence of Carboxylic Acid Structure on the Kinetics of Polyurethane Foam Acidolysis to Recycled Polyol
Closed-loop recycling of plastics is needed to bridge the gap between the material demands imposed by a growing global population and the depletion of nonrenewable petroleum feedstocks. Here, we examine chemical recycling of polyurethane foams (PUFs), the sixth most produced polymer in the world, th...
Gespeichert in:
Veröffentlicht in: | JACS Au 2024-08, Vol.4 (8), p.3194-3204 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Closed-loop recycling of plastics is needed to bridge the gap between the material demands imposed by a growing global population and the depletion of nonrenewable petroleum feedstocks. Here, we examine chemical recycling of polyurethane foams (PUFs), the sixth most produced polymer in the world, through PUF acidolysis via dicarboxylic acids (DCAs) to release recyclable polyols. Acidolysis enables recycling of the polyol component of PUFs to high-quality materials, and while the influence of DCA structure on recycled PUF quality has been reported, there are no reports that examine the influence of DCA structure on the kinetics of polyol release. Here, we develop quantitative relationships between DCA structure and PUF acidolysis function for ∼10 different DCA reagents. PUF acidolysis kinetics were quantified with ∼1 s time resolution using the rate of carbon dioxide (CO2) gas generation, which is shown to occur concomitantly with polyol release. Pseudo-zeroth-order rate constants were measured as a function of DCA composition, reaction temperature, and DCA concentration, and apparent activation barriers were extracted. Our findings demonstrate that DCA carboxyl group proximity and phase of transport are descriptors of PUF acidolysis rates, rather than expected descriptors like pK a. DCAs with closer proximity acid groups exhibited faster PUF acidolysis rate constants. Furthermore, a shrinking core mechanism effectively describes the kinetic functional form of the kinetics of PUF acidolysis by DCAs. Measurements of acidolysis kinetics for model PUF (M-PUF) and end-of-life PUF (EOL PUF) confirm the applicability of our analysis to postconsumer materials. This work provides insights into the physical and chemical mechanisms controlling acidolysis, which can facilitate the development of efficient closed-loop PUF chemical recycling schemes. |
---|---|
ISSN: | 2691-3704 2691-3704 |
DOI: | 10.1021/jacsau.4c00495 |