Kazakov-Migdal model on the graph and Ihara zeta function

A bstract We propose the Kazakov-Migdal model on graphs and show that, when the parameters of this model are appropriately tuned, the partition function is represented by the unitary matrix integral of an extended Ihara zeta function, which has a series expansion by all non-collapsing Wilson loops w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of high energy physics 2022-09, Vol.2022 (9), p.178-32, Article 178
Hauptverfasser: Matsuura, So, Ohta, Kazutoshi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A bstract We propose the Kazakov-Migdal model on graphs and show that, when the parameters of this model are appropriately tuned, the partition function is represented by the unitary matrix integral of an extended Ihara zeta function, which has a series expansion by all non-collapsing Wilson loops with their lengths as weights. The partition function of the model is expressed in two different ways according to the order of integration. A specific unitary matrix integral can be performed at any finite N thanks to this duality. We exactly evaluate the partition function of the parameter-tuned Kazakov-Migdal model on an arbitrary graph in the large N limit and show that it is expressed by the infinite product of the Ihara zeta functions of the graph.
ISSN:1029-8479
1029-8479
DOI:10.1007/JHEP09(2022)178