Advancing the scale of synthetic biology via cross-species transfer of cellular functions enabled by iModulon engraftment

Machine learning applied to large compendia of transcriptomic data has enabled the decomposition of bacterial transcriptomes to identify independently modulated sets of genes, such iModulons represent specific cellular functions. The identification of iModulons enables accurate identification of gen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2024-03, Vol.15 (1), p.2356-2356, Article 2356
Hauptverfasser: Choe, Donghui, Olson, Connor A., Szubin, Richard, Yang, Hannah, Sung, Jaemin, Feist, Adam M., Palsson, Bernhard O.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Machine learning applied to large compendia of transcriptomic data has enabled the decomposition of bacterial transcriptomes to identify independently modulated sets of genes, such iModulons represent specific cellular functions. The identification of iModulons enables accurate identification of genes necessary and sufficient for cross-species transfer of cellular functions. We demonstrate cross-species transfer of: 1) the biotransformation of vanillate to protocatechuate, 2) a malonate catabolic pathway, 3) a catabolic pathway for 2,3-butanediol, and 4) an antimicrobial resistance to ampicillin found in multiple Pseudomonas species to Escherichia coli . iModulon-based engineering is a transformative strategy as it includes all genes comprising the transferred cellular function, including genes without functional annotation. Adaptive laboratory evolution was deployed to optimize the cellular function transferred, revealing mutations in the host. Combining big data analytics and laboratory evolution thus enhances the level of understanding of systems biology, and synthetic biology for strain design and development. Machine learning applied to large compendia of transcriptomic data has enabled the decomposition of bacterial transcriptomes to identify independently modulated sets of genes. Here the authors present iModulon-based engineering for precise identification of genes for cross-species function transfer to streamline synthetic biology for strain development and biomanufacturing.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-024-46486-3