Trilobite compound eyes with crystalline cones and rhabdoms show mandibulate affinities
Most knowledge about the structure, function, and evolution of early compound eyes is based on investigations in trilobites. However, these studies dealt mainly with the cuticular lenses and little was known about internal anatomy. Only recently some data on crystalline cones and retinula cells were...
Gespeichert in:
Veröffentlicht in: | Nature communications 2019-06, Vol.10 (1), p.2503-2503, Article 2503 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Most knowledge about the structure, function, and evolution of early compound eyes is based on investigations in trilobites. However, these studies dealt mainly with the cuticular lenses and little was known about internal anatomy. Only recently some data on crystalline cones and retinula cells were reported for a Cambrian trilobite species. Here, we describe internal eye structures of two other trilobite genera. The Ordovician
Asaphus
sp. reveals preserved crystalline cones situated underneath the cuticular lenses. The same is true for the Devonian species
Archegonus
(
Waribole
)
warsteinensis
, which in addition shows the fine structure of the rhabdom in the retinula cells. These results suggest that an apposition eye with a crystalline cone is ancestral for Trilobita. The overall similarity of trilobite eyes to those of myriapods, crustaceans, and hexapods corroborates views of a phylogenetic position of trilobites in the stem lineage of Mandibulata.
Little is known about the internal anatomy of early eyes. Here, Scholtz and colleagues show the internal eye structures from fossils of two genera of trilobites, which support an ancestral apposition eye with crystalline cones in Trilobita and a close affinity with Mandibulata. |
---|---|
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/s41467-019-10459-8 |