Enhancing brain tumor detection in MRI with a rotation invariant Vision Transformer

The Rotation Invariant Vision Transformer (RViT) is a novel deep learning model tailored for brain tumor classification using MRI scans. RViT incorporates rotated patch embeddings to enhance the accuracy of brain tumor identification. Evaluation on the Brain Tumor MRI Dataset from Kaggle demonstrate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers in neuroinformatics 2024, Vol.18, p.1414925
Hauptverfasser: Krishnan, Palani Thanaraj, Krishnadoss, Pradeep, Khandelwal, Mukund, Gupta, Devansh, Nihaal, Anupoju, Kumar, T Sunil
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Rotation Invariant Vision Transformer (RViT) is a novel deep learning model tailored for brain tumor classification using MRI scans. RViT incorporates rotated patch embeddings to enhance the accuracy of brain tumor identification. Evaluation on the Brain Tumor MRI Dataset from Kaggle demonstrates RViT's superior performance with sensitivity (1.0), specificity (0.975), F1-score (0.984), Matthew's Correlation Coefficient (MCC) (0.972), and an overall accuracy of 0.986. RViT outperforms the standard Vision Transformer model and several existing techniques, highlighting its efficacy in medical imaging. The study confirms that integrating rotational patch embeddings improves the model's capability to handle diverse orientations, a common challenge in tumor imaging. The specialized architecture and rotational invariance approach of RViT have the potential to enhance current methodologies for brain tumor detection and extend to other complex imaging tasks.
ISSN:1662-5196
1662-5196
DOI:10.3389/fninf.2024.1414925