Gender-specific alteration of steroid metabolism and its impact on viral replication in a mouse model of hepatitis B virus infection
Hepatitis B virus (HBV) is a sex-specific pathogen that is more severe in males than in females. Sex disparities in HBV infection have been attributed to hormonal differences between males and females. However, whether HBV infection affects the metabolic signatures of steroid hormones and how these...
Gespeichert in:
Veröffentlicht in: | Animal cells and systems 2024, Vol.28 (1), p.466-480 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Hepatitis B virus (HBV) is a sex-specific pathogen that is more severe in males than in females. Sex disparities in HBV infection have been attributed to hormonal differences between males and females. However, whether HBV infection affects the metabolic signatures of steroid hormones and how these influences viral replication remains unclear. In this study, we investigated whether HBV infection alters steroid metabolism and its effects on HBV replication. Serum samples from male and female mice obtained after the hydrodynamic injection of replication-competent HBV plasmids were subjected to quantitative steroid profiling. Serum steroid levels in mice were analyzed using an
metabolism assay with the mouse liver S9 fraction. The alteration of steroids by HBV infection was observed only in male mice, particularly with significant changes in androgens, whereas no significant hormonal changes were observed in female mice. Among the altered steroids, dehydroepiandrosterone (DHEA) levels increased the most in male mice after HBV infection. An
metabolism assay revealed that androgen levels were significantly reduced in HBV-infected male mice. Furthermore, the genes involved in DHEA biosynthesis were significantly upregulated in HBV-infected male mice. Interestingly, reduced dihydrotestosterone in male mice significantly inhibits viral replication by suppressing HBV promoter activity, suggesting a viral strategy to overcome the antiviral effects of steroid hormones in males. Our data demonstrated that HBV infection can cause sex-specific changes in steroid metabolism. |
---|---|
ISSN: | 1976-8354 2151-2485 |
DOI: | 10.1080/19768354.2024.2403569 |