Synthesis, Spectroscopic Analysis and Antidiabetic Properties of Copper (II) Complex of Mangifera indica Leaf Crude Extract
Many applied conventional drugs in treating diabetes have been reported to possess some drawbacks which necessitate a search for alternative therapies. In order to search for a more active antidiabetic agent, this study synthesized and evaluated antidiabetic properties of Mangifera indica crude extr...
Gespeichert in:
Veröffentlicht in: | Biology, medicine, & natural product chemistry (Online) medicine, & natural product chemistry (Online), 2023-03, Vol.12 (1), p.315-321 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Many applied conventional drugs in treating diabetes have been reported to possess some drawbacks which necessitate a search for alternative therapies. In order to search for a more active antidiabetic agent, this study synthesized and evaluated antidiabetic properties of Mangifera indica crude extract and its Cu (II) complex in alloxan-induced diabetic albino rats. The leaf crude extract and its metal complex were characterized using percentage metal analysis and IR spectroscopic data. Experimental animals were induced by a single intraperitoneal injection of Alloxan monohydrate at a single dose of 140 mg/kg body weight and animals with fasting blood glucose level (BGL) > 200 mg/dL were considered diabetic. Metformin was used as a standard drug. Fasting blood glucose level and body weight were used to assess the antidiabetic activity. One-way ANOVA was used to determine the level of statistically significant at p< 0.05. The crude extract was found to coordinate with the metal ion through O donor atom of C=O and O-H of phenol and ketone respectively. The Cu (II) complex of the crude extracts at tested dose of 600mg/kg demonstrated more antidiabetic activity without weight gain than the standard drug. It is concluded that the Cu (II) complex could be a potential material in the development of more active and negative-side-effect-free antidiabetic drug. |
---|---|
ISSN: | 2089-6514 2540-9328 |
DOI: | 10.14421/biomedich.2023.121.315-321 |