Developmental neurotoxic effects of bisphenol A and its derivatives in Drosophila melanogaster
As a result of the ban on bisphenol A (BPA), a hormone disruptor with developmental neurotoxicity, several BPA derivatives (BPs) have been widely used in industrial production. However, there are no effective methods for assessing the neurodevelopmental toxic effects of BPs. To address this, a Droso...
Gespeichert in:
Veröffentlicht in: | Ecotoxicology and environmental safety 2023-07, Vol.260, p.115098-115098, Article 115098 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | As a result of the ban on bisphenol A (BPA), a hormone disruptor with developmental neurotoxicity, several BPA derivatives (BPs) have been widely used in industrial production. However, there are no effective methods for assessing the neurodevelopmental toxic effects of BPs. To address this, a Drosophila exposure model was established, and W1118 was reared in food containing these BPs. Results showed that each BPs displayed different semi-lethal doses ranging from 1.76 to 19.43 mM. Exposure to BPs delayed larval development and affected axonal growth, resulting in the abnormal crossing of the midline of axons in the β lobules of mushroom bodies, but the damage caused by BPE and BPF was relatively minor. BPC, BPAF, and BPAP have the most significant effects on locomotor behavior, whereas BPC exhibited the most affected social interactions. Furthermore, exposure to high-dose BPA, BPC, BPS, BPAF, and BPAP also significantly increased the expression of Drosophila estrogen-related receptors. These demonstrated that different kinds of BPs had different levels of neurodevelopmental toxicity, and the severity was BPZ > BPC and BPAF > BPB > BPS > BPAP ≈ BPAl ≈ BPF > BPE. Therefore, BPZ, BPC, BPS, BPAF, and BPAP should be evaluated as potential alternatives to BPA.
•BPs exposure delayed the development of Drosophila.•BPs exposure induced axon guidance defects in Mushroom body.•BPs exposure caused motor and social behavior deficits in Drosophila.•BPs exposure led to abnormal expression of estrogen-related receptors in Drosophila. |
---|---|
ISSN: | 0147-6513 1090-2414 |
DOI: | 10.1016/j.ecoenv.2023.115098 |