Characterization of sago tree parts from Sentani, Papua, Indonesia for biomass energy utilization

Biomass derived from organic waste in industrial processes is an effective method to mitigate the negative impacts of agricultural waste materials. In Sentani, Papua, one such potential biomass source is sago tree waste. This study characterized the waste from the bark, middle, and inner parts of th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Heliyon 2024-01, Vol.10 (1), p.e23993, Article e23993
Hauptverfasser: Susanto, Benny, Tosuli, Yohanis Tangke, Adnan, Cahyadi, Nami, Hossein, Surjosatyo, Adi, Alandro, Daffa, Nugroho, Alvin Dio, Rashyid, Muhammad Ibnu, Muflikhun, Muhammad Akhsin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Biomass derived from organic waste in industrial processes is an effective method to mitigate the negative impacts of agricultural waste materials. In Sentani, Papua, one such potential biomass source is sago tree waste. This study characterized the waste from the bark, middle, and inner parts of the sago tree to evaluate its biomass energy potential. Scanning electron microscopy with energy-dispersive X-ray (SEM-EDX) analysis of the complete sample revealed that oxygen, carbon, and silicon were the primary elements, with carbon content ranging from 30.75 % to 38.87 %. This indicates that all parts of the sago plant have the potential to be used as biomass fuel. Thermogravimetric analysis (TGA) results showed that the inner section of the sago had the lowest moisture content at approximately 13.3 %, followed by the outer part at 42 % and the bark at 55 %. The inner section had the highest lignin content, approximately 37 %, and exhibited the slowest thermal degradation in the differential thermal analysis (DTA) profile. The outer and bark parts of the sago were more reactive in stage II of the DTA profile, suggesting a higher concentration of cellulose and hemicellulose compared to lignin, making them suitable for gasification and pyrolysis. The heating value of sago bark was determined to be 12.85 MJ/kg (adb). These findings underscore the potential of sago waste as a renewable energy source, particularly in remote areas.
ISSN:2405-8440
2405-8440
DOI:10.1016/j.heliyon.2024.e23993