Ab Initio Investigations of Thermoelectric Effects in Graphene – Boron Nitride Nanoribbons
Thermoelectric effects of graphene – hexagonal boron nitride (hBN) nanoribbons have been investigated by density functional theory (DFT) calculations. Pristine zig-zag nanoribbons are not suited to achieve high thermopower as the transmission function is flat around the chemical potential. By introd...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Thermoelectric effects of graphene – hexagonal boron nitride (hBN) nanoribbons have been investigated by density functional theory (DFT) calculations. Pristine zig-zag nanoribbons are not suited to achieve high thermopower as the transmission function is flat around the chemical potential. By introducing hBN inclusions, the nanoribbon systems exhibit enhanced thermopower, due to the asymmetries introduced in the spin dependent transmission functions. Finite temperature differences between the two contacts are considered. The possibility of a good integration of hBN into graphene, makes the hybrid systems suitable for thermoelectric applications, which may be subject to further optimizations. |
---|---|
ISSN: | 2100-014X 2101-6275 2100-014X |
DOI: | 10.1051/epjconf/201610802045 |