3D ink-extrusion additive manufacturing of CoCrFeNi high-entropy alloy micro-lattices

Additive manufacturing of high-entropy alloys combines the mechanical properties of this novel family of alloys with the geometrical freedom and complexity required by modern designs. Here, a non-beam approach to additive manufacturing of high-entropy alloys is developed based on 3D extrusion of ink...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2019-02, Vol.10 (1), p.904-904, Article 904
Hauptverfasser: Kenel, Christoph, Casati, Nicola P. M., Dunand, David C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Additive manufacturing of high-entropy alloys combines the mechanical properties of this novel family of alloys with the geometrical freedom and complexity required by modern designs. Here, a non-beam approach to additive manufacturing of high-entropy alloys is developed based on 3D extrusion of inks containing a blend of oxide nanopowders (Co 3 O 4  + Cr 2 O 3  + Fe 2 O 3  + NiO), followed by co-reduction to metals, inter-diffusion and sintering to near-full density CoCrFeNi in H 2 . A complex phase evolution path is observed by in-situ X-ray diffraction in extruded filaments when the oxide phases undergo reduction and the resulting metals inter-diffuse, ultimately forming face-centered-cubic equiatomic CoCrFeNi alloy. Linked to the phase evolution is a complex structural evolution, from loosely packed oxide particles in the green body to fully-annealed, metallic CoCrFeNi with 99.6 ± 0.1% relative density. CoCrFeNi micro-lattices are created with strut diameters as low as 100 μm and excellent mechanical properties at ambient and cryogenic temperatures. Additive manufacturing of high entropy alloys is still an emerging field that usually relies on expensive pre-alloyed powders. Here, the authors develop a method to 3D ink-print a CoCrFeNi high entropy alloy using inexpensive blended oxide nanopowders, hydrogen reduction, and sintering.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-019-08763-4