Rotation Matrix of a Charged Symmetrical Body: One-Parameter Family of Solutions in Elementary Functions
Euler–Poisson equations of a charged symmetrical body in external constant and homogeneous electric and magnetic fields are deduced starting from the variational problem, where the body is considered as a system of charged point particles subject to holonomic constraints. The final equations are wri...
Gespeichert in:
Veröffentlicht in: | Universe (Basel) 2024-06, Vol.10 (6), p.250 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Euler–Poisson equations of a charged symmetrical body in external constant and homogeneous electric and magnetic fields are deduced starting from the variational problem, where the body is considered as a system of charged point particles subject to holonomic constraints. The final equations are written for the center-of-mass coordinate, rotation matrix and angular velocity. A general solution to the equations of motion is obtained for the case of a charged ball. For the case of a symmetrical charged body (solenoid), the task of obtaining the general solution is reduced to the problem of a one-dimensional cubic pseudo-oscillator. In addition, we present a one-parametric family of solutions to the problem in elementary functions. |
---|---|
ISSN: | 2218-1997 2218-1997 |
DOI: | 10.3390/universe10060250 |