Isotopic variations in surface waters and groundwaters of an extremely arid basin and their responses to climate change

Climate change accelerates the global water cycle. However, the relationships between climate change and hydrological processes in the alpine arid regions remain elusive. We sampled surface water and groundwater at high spatial and temporal resolutions to investigate these relationships in the Qaida...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Hydrology and earth system sciences 2023-11, Vol.27 (21), p.4019-4038
Hauptverfasser: Zhang, Yu, Tan, Hongbing, Cong, Peixin, Shi, Dongping, Rao, Wenbo, Zhang, Xiying
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Climate change accelerates the global water cycle. However, the relationships between climate change and hydrological processes in the alpine arid regions remain elusive. We sampled surface water and groundwater at high spatial and temporal resolutions to investigate these relationships in the Qaidam Basin, an extremely arid area in the northeastern Tibetan Plateau. Stable H–O isotopes and radioactive 3H isotopes were combined with atmospheric simulations to examine hydrological processes and their response mechanisms to climate change. Contemporary climate processes and change dominate the spatial and temporal variations of surface water isotopes, specifically the westerlies moisture transport and the local temperature and precipitation regimes. The H–O isotopic compositions in the eastern Kunlun Mountains showed a gradually depleted eastward pattern, while a reverse pattern occurred in the Qilian Mountains water system. Precipitation contributed significantly more to river discharge in the eastern basin (approximately 45 %) than in the middle and western basins (10 %–15 %). Moreover, increasing precipitation and a shrinking cryosphere caused by current climate change have accelerated basin groundwater circulation. In the eastern and southwestern Qaidam Basin, precipitation and meltwater infiltrate along preferential flow paths, such as faults, volcanic channels, and fissures, permitting rapid seasonal groundwater recharge and enhanced terrestrial water storage. However, compensating for water loss due to long-term ice and snow melt will be a challenge under projected increasing precipitation in the southwestern Qaidam Basin, and the total water storage may show a trend of increasing before decreasing. Great uncertainty about water is a potential climate change risk facing the arid Qaidam Basin.
ISSN:1607-7938
1027-5606
1607-7938
DOI:10.5194/hess-27-4019-2023