On Total Vertex Irregularity Strength of Hexagonal Cluster Graphs
For a simple graph G with a vertex set VG and an edge set EG, a labeling f:VG∪EG⟶1,2,⋯,k is called a vertex irregular total k−labeling of G if for any two different vertices x and y in VG we have wtx≠wty where wtx=fx+∑u∈VGfxu. The smallest positive integer k such that G has a vertex irregular total...
Gespeichert in:
Veröffentlicht in: | International journal of mathematics and mathematical sciences 2021, Vol.2021, p.1-9 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For a simple graph G with a vertex set VG and an edge set EG, a labeling f:VG∪EG⟶1,2,⋯,k is called a vertex irregular total k−labeling of G if for any two different vertices x and y in VG we have wtx≠wty where wtx=fx+∑u∈VGfxu. The smallest positive integer k such that G has a vertex irregular total k−labeling is called the total vertex irregularity strength of G, denoted by tvsG. The lower bound of tvsG for any graph G have been found by Baca et. al. In this paper, we determined the exact value of the total vertex irregularity strength of the hexagonal cluster graph on n cluster for n≥2. Moreover, we show that the total vertex irregularity strength of the hexagonal cluster graph on n cluster is 3n2+1/2. |
---|---|
ISSN: | 0161-1712 1687-0425 |
DOI: | 10.1155/2021/2743858 |